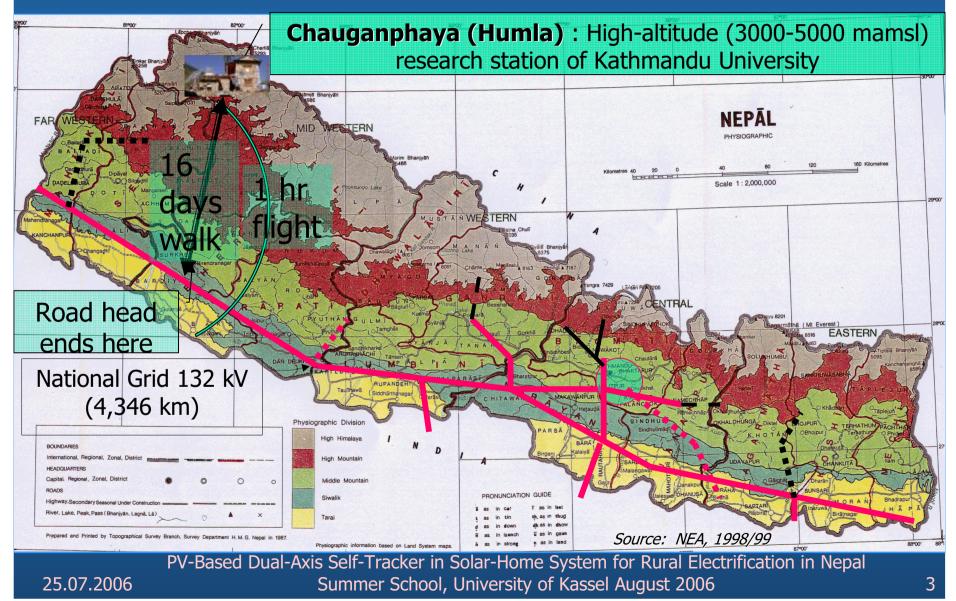

PV-Based Dual-Axis Self-Tracker in Remote Area Power Supply System (RAPS) for Rapid Rural Electrification in Nepal Experience of Kathmandu University (KU)

NEA's 50 kW PV-power plant in Simikot, Humla, Source: Zahnd et al, 2006

Prof. Dr. Ramesh Maskey Expatriate RE Alexander Zahnd, MSc School of Engineering Interest: R&D in renewable energy technologies


PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006

25.07.2006

Prospect for rural electrification

Need assessment: Holistic <u>community development (HCD)</u>

No light & open fire

Fire hazard

Blindness

Indoor pllution

Heart attacks

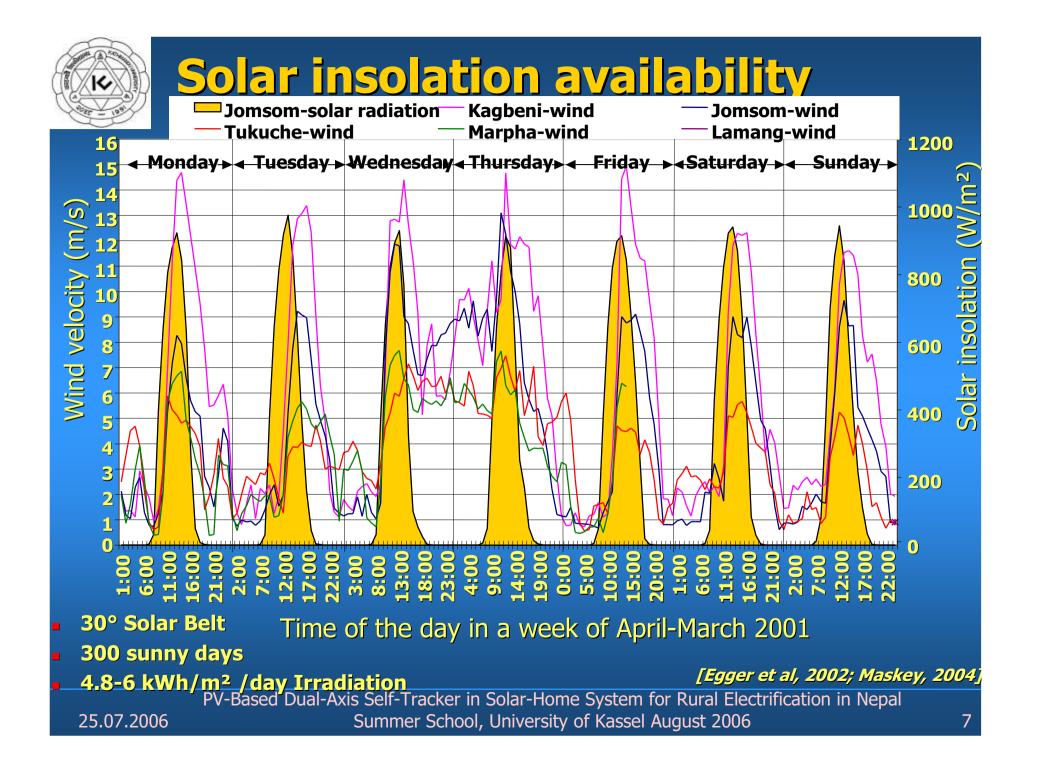
No drinking water

1	Region	OECD	Developing	Nepal		
		Countries	countries			
	Per capita	2500	900	69		
	electricity	in 2000	(Hunwick, 2002)	(Kathmandu Post, 2005)		
	consumtion			1 331, 13335		
	in kWh					

RET: a part of basic HCD:

- **Respiratory diseases** 60 W 11 W 1 W
 - **Choices:**

No sanitation *formation from Zahnd, 2002* **LE: <1000 hrs. LE: <12,000 hrs LE: <50** PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal LE: <50,000 hrs *Source: Photo and information from Zahnd, 2002* Summer School, University of Kassel August 2006 25.07.2006


Problems and prospects for RAPS

Sustainable and appropriate A part of HCD Protect environment **Harsh Condition Sparse Settlements** Matches with load Tourism Resources (fund, fuels) Deforestation Local entrepreneurship

> PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006

25.07.2006

The energy technology options 8848 m amst Tibetan					
Ecological Regio	ons	8848 m amst	Tibetan Plateau		
180-250 k	ns m cross-sectio				
67 m anst	Hyd	ropower Sites	Mountains		
	and my				
Indian Plains					
Population	Dense	Grouped	Scattered		
Key features	Easy access Import accessible	Less easy access Import more expensive	Difficult or no access Import impossible unless very portable or via air lift		
Energy options Di	esel/Biogas/ <u>Grid</u>	Diesel/Bio-mass/ <u>Hydro</u>	<u>Micro-hydro</u> /Solar/Wind modified from Aitken et al, 1991, Zahnd, 2006		
PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal25.07.2006Summer School, University of Kassel August 20066					

Government policy for RET in Nepal

- Government (AEPC) aims at: providing 1 RET/household for 58% of rural population by 2020 with the following visions:
 - Decentralized energy system through active participation
 - Development through market mechanisms

Solar home system	Cost US\$	Subsidy US\$	Remarks		
 One Solar module 10- 40 W Battery deep cycle 40- 75 AH Three 10-20 Watt fluorescent lamps 	300 - 400	Max. 110	 Additional 50% and 2.5% subsidy per SHS for remote households 75% for public institutions reduced by 10% per annum 		
Solar Entrepreneurs within 10 years of introducing >15 (mostly in SHS in Nepal Kathmandu) [Source: Zahnd et al, 2006; CADEC, 2004, CES 2000] PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal					
25.07.2006 Summer School, University of Kassel August 2006 8					

Installed capacity of Renewable Energy Technology in Nepal

	tricity from small argy technologies	Number of installation	Total capacity (kW)
Solar home sys	stems in 73 districts	61, 891	2,024.574
	804 turbine mills (7,106.9 kW)		
Micro-hydro electrification schemes	872 improved watermills (pani- <i>ghatta</i>),	1,371	7,472
Biogas plants		111,395	766,147 m ³
Wind power pl	ants (demonstration)	6	1.2
[Source: Zahnd et al, 2006; CADEC, 2004]			
PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal 25.07.2006 Summer School, University of Kassel August 2006 9			

25.07.2006

Electrified households in Nepal

Source of electricity	Percentage of households*		
NEA and other isolated systems (domestic consumers)	29.83		
Solar home system	1.02		
Micro-hydro schemes	1.86		
Non-domestic category of consumers of NEA and other systems	0.97		
Not known (non-reported solar home systems, illegal connection)	5.71		
Total reported by the 2001 Census	39.39		
* Total households are 4,174,374. The average household size is ~5.4 [CADEC, 2004 and CBS, 2000]			

PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006

Kathmandu University Quality education for leadership

Estd. in 1991 as University Staff excld. affiliated colleges

	Regular faculty(Professors 96)	192
and a	Regular visiting scholars	19
	Occasional visiting scholrs	<u>2</u> 8
11月月	Non-teaching staffs	125
	 Assets as of 2004 	
	Land in Ha	45
Sec.1	Buildings in m ²	20,600
ffice	Enrolment as of 2004	
×)	Students in six schools (Natural sc	ience,
Le.	Management, Engineering, Medica	1
	science, Arts and Education)	2,212
21	Affiliated colleges in six different	
	programs	3,519
	Academic degree as of 2003	
	Graduate diploma, Bachelor	1,844
plan	 Masters and PhD 	393
	Tracker in Solar-Home System for Rural Electrification in Nep	
Summ	er School, University of Kassel August 2006	11

Student research project for SHS

- Two PV-panels mounted on 30 degree
- Connected differentially with motor
- Components:
 - Primary sensors
 - Secondary sensor
 - Frame and shaft
 - Gear and pinion
 - Gear head motor
 - Screw jack
 - Underground cable
 - Battery bank
 - White-light emitting diode (WLED)

Info and Photo: Pandey et al, 2006

Student research project...

Feature:

- Main sensors tracks sun
- Secondary sensor causes the tracker return to original position in the morning
- 5 V OCV is enough to track the sun at around 30 min interval
- 45 W SHS provides energy for 3 WLED (3 W) for 5 hours/day
- 17 household can be benefited
- Cost ~ 400 €/system with WLED

Source: Pandey et al, 2006

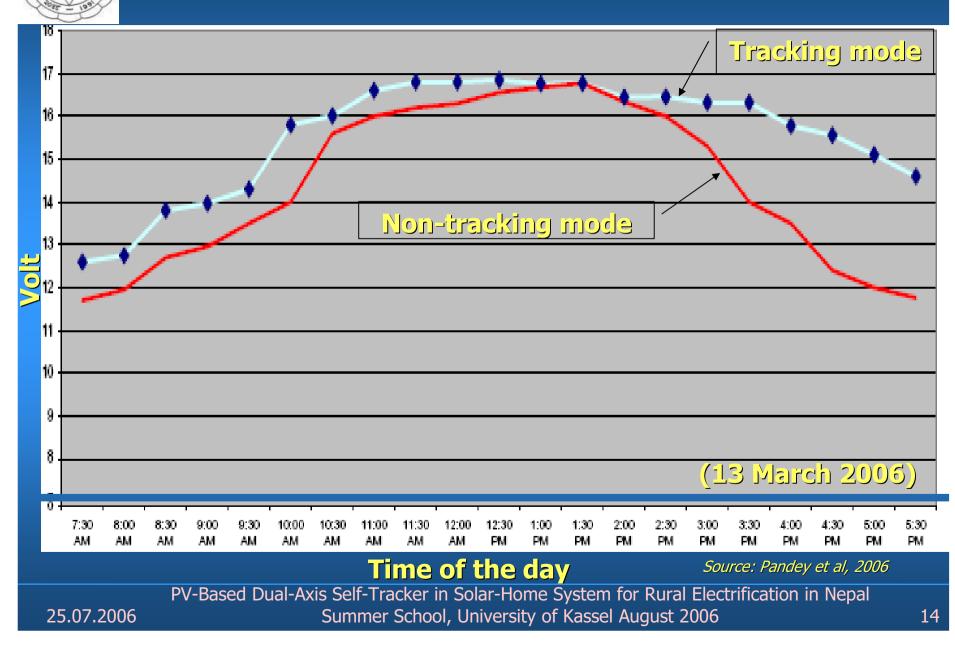


Photo: Maskey, 2005

PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006

13

Energy gain due to tracking mode

High-altitude Research Station of Kathmandu University

Control Board with Volt-meter and Amp-meter for power input and output dication.

> Charge- & Discharge-Controller

> > **Battery Bank with** 8 x 100 AH @ 12VDC Deep Cycle Batteries

> > > sulated

Battery

Bank Lid

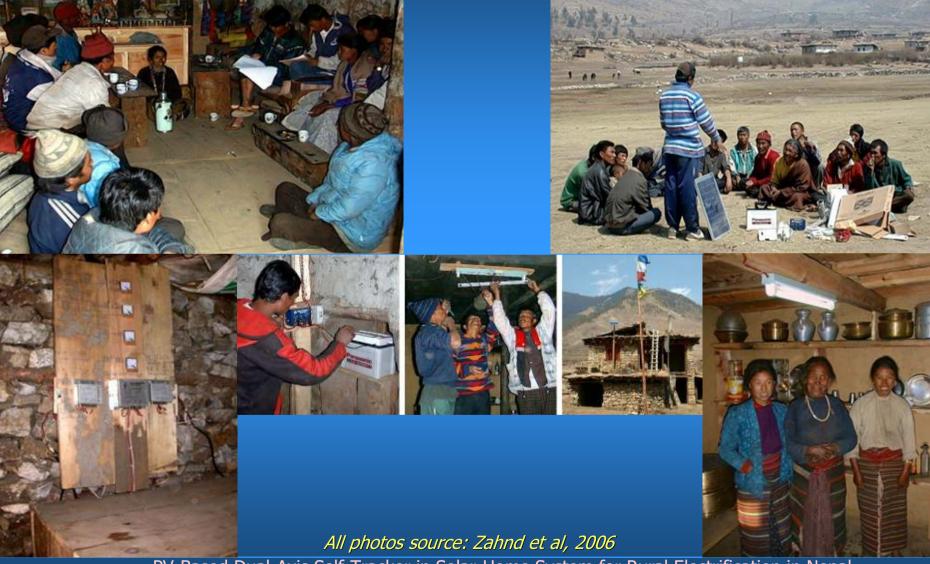
Armored Underground Cables from the Battery Bank to the four different Clust Photo: Zahnd, 2004 Features

- Four four-module 300 watt SHS with selftracking system
- KU's Solar water heater Instrumentation
- Solar cookers SK-14
- Six-battery bank 8 x 100 AH @ 12 VDC
- Armoured cable

- **Basic criteria:**
 - Solar insolation (W/m²) at the site
 - Load growth pattern
 - Reliability for operation and maitenance
 - Prefer well-proven locally manufactured parts
 - Least cost solution
 - Greater participation of stakeholders
 - Culturally appropriate and sustainable training
 - Zero ecological impact

PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006

15


Projects grown out of successful student research projects				
Project area	RAPS Technology	Benefi- ciary	Remarks	
Chauganphaya Humla Load 300 Watt	 Four 75 Watt Self- tracked SHS Three 1-Watt WLED/HH Underground cable 12 V Battery bank (six 100 AH) 	63 HH	 Smokeless stove Pit latrine Drinking water system 	
Kholsi village Humla Load 250 Watt	 Pico-hydro 1000 W Three 1-Watt WLED/HH Warm water heating system 	50 HH	 Two rod heaters (700 and 300 Watt) Electronic load controller 	
<i>Source: Zahnd, 2004</i> PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal				

25.07.2006

Summer School, University of Kassel August 2006

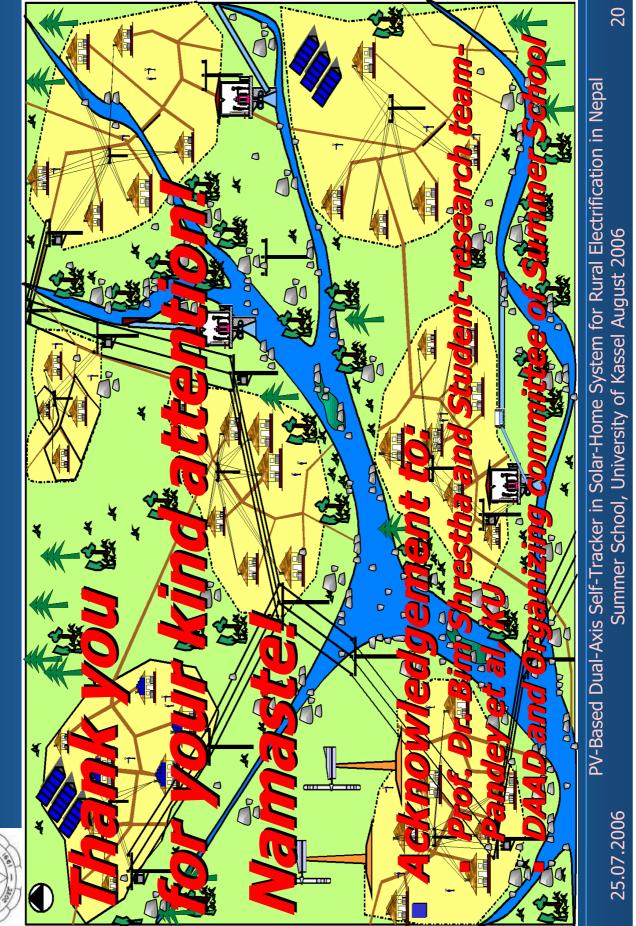
Project implementation process

PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006

Holistic community development

All photos source: Zahnd et al, 2006

PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal Summer School, University of Kassel August 2006


25.07.2006

Observation and Conclusion

- RAPS System: crucial for rapid rural electrification
- Basic needs: Lighting-smokeless stove-clean water-latrine
- RET project should be integrated with HCD projects
- RET must be tested well on site for community acceptance
- Key aspects: appropriateness and sustainable
- Need for more High-altitude research stations of KU
- PV-based self-tracking system achieves 40% of power gain
- PV-based self-tracked RAPS system: a cheap solution
- Design of control system to follow sun during cloudy days
- Possibility for PV-Wind-hydro hybrid system: research area for KU
 PV-Based Dual-Axis Self-Tracker in Solar-Home System for Rural Electrification in Nepal
 25.07.2006 Summer School, University of Kassel August 2006 19

