The porter problem in ecological economics: Solar battery recycling in rural electrification

2008 ISEE conference, Nairobi

Arjen Mulder and Alex Zahnd amulder@rsm.nl 10 August 2008 Nairobi, Kenia

Outline of this presentation

- Main topic
- Research approach
- Model
- 4 Scenario analysis

Explanation of the topic

• We propose a model for analysing an incentive compatibility problem in solid waste recycling.

Explanation of the topic

- We propose a model for analysing an incentive compatibility problem in solid waste recycling.
- We sketch a case study in Nepal, where rural electrification through solar home systems leads to the dumping of used batteries.

Explanation of the topic

- We propose a model for analysing an incentive compatibility problem in solid waste recycling.
- We sketch a case study in Nepal, where rural electrification through solar home systems leads to the dumping of used batteries.
- Main idea: Rethink policies that facilitate the introduction of aggressive solid waste in markets with an imperfect physical and institutional infrastructure.

Research approach

• We come up with a number of necessary conditions for an incentive-compatible contract that encourages people to hand in dead batteries.

Research approach

- We come up with a number of necessary conditions for an incentive-compatible contract that encourages people to hand in dead batteries.
- We sketch the reality content of the model by means of a case study about solar home systems (SHSs) in Humla, Nepal.

Research approach

- We come up with a number of necessary conditions for an incentive-compatible contract that encourages people to hand in dead batteries.
- We sketch the reality content of the model by means of a case study about solar home systems (SHSs) in Humla, Nepal.
- Since at present no battery recycling system exists in Nepal, our analysis is based on three scenarios.

Research approach

- We come up with a number of necessary conditions for an incentive-compatible contract that encourages people to hand in dead batteries.
- We sketch the reality content of the model by means of a case study about solar home systems (SHSs) in Humla, Nepal.
- Since at present no battery recycling system exists in Nepal, our analysis is based on three scenarios.
- In each scenario, NGOs may help to monitor or even maintain SHSs, or facilitate recycling.

Case background

Our case is located in Humla, a remote and poor district.

• Example of community.

Case background

Case background

Our case is located in Humla, a remote and poor district.

• Properly installed SHSs.

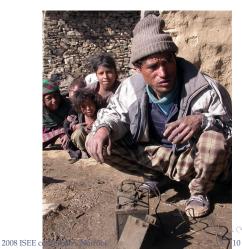
Case background

Case background

Our case is located in Humla, a remote and poor district.

 Battery abuse → Short lifespan.

Case background



Case background

Case background

Case background

Case background

An NGO may not only monitor where batteries are located, but also assist with installation, training, and maintenance.

• Example of properly installed SHSs.

Case background

An NGO may not only monitor where batteries are located, but also assist with installation, training, and maintenance.

Case background

An NGO may not only monitor where batteries are located, but also assist with installation, training, and maintenance.

 Proper battery installation → Longer lifespan.

Case background

An NGO may not only monitor where batteries are located, but also assist with installation, training, and maintenance.

Case background

An NGO may not only monitor where batteries are located, but also assist with installation, training, and maintenance.

Model (1)

We first assume symmetric information, equal environmental impact. Principal minimises expenditures:

$$\min_{\{(\overline{p},q);(p,q)\}} \Theta(q) - \left(\overline{p}\overline{\lambda} + \underline{p}\underline{\lambda}\right)q \tag{1}$$

subject to the agent's participation constraints:

$$p - \underline{C}(q, \underline{\lambda}) \ge 0,$$
 (a)

$$p - \overline{C}(q, \underline{\lambda}) \ge 0,$$
 (b)

$$\overline{p} - \underline{C}(q, \overline{\lambda}) \ge 0,$$
 (c)

$$\overline{p} - \overline{C}(q, \overline{\lambda}) \ge 0,$$
 (d)

and the incentive compatibility constraints:

$$\overline{p} - \overline{C}(q, \overline{\lambda}) \ge p - \overline{C}(q, \underline{\lambda}),$$
 (e)

$$\overline{p} - \overline{C}(q, \overline{\lambda}) \ge \overline{p} - \underline{C}(q, \overline{\lambda}),$$
 (f)

Model (2)

- We then gradually introduce asymmetric information, and allow the solid waste to have a different environmental impact (e.g., remote areas larger environmental impact than areas nearby collection or recycling facility).
- Track records of the whereabouts of the solar PV batteries are of course crucial. Battery monitoring programmes are often lacking, particularly in remote areas (where ecosystems are often most delicate).
- Yet, even under symmetric information on battery conditions, recycling may not take place due to budget constraints of the principal.

Scenario analysis

We sketch three possible scenarios:

Scenario analysis

We sketch three possible scenarios:

• Laissez faire: Unpredictable, huge risk of environmental damage.

Scenario analysis

We sketch three possible scenarios:

- Laissez faire: Unpredictable, huge risk of environmental damage.
- NGO monitors: Good basis for setting up recycling programme.

Scenario analysis

We sketch three possible scenarios:

- Laissez faire: Unpredictable, huge risk of environmental damage.
- NGO monitors: Good basis for setting up recycling programme.
- NGO monitors & collects: Fairly predictable outcome, reduced environmental risk.

Summary

- In this paper, we have expressed our concern about policies that facilitate the introduction of aggressive toxic solid waste into delicate ecosystems.
- We propose a model that clarifies the incentive (in)compatibility of the various contracts.
- Given a case study analysis, we propose how an incentive compatible collection & recycling programme may look like.