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1111 Introduction   Introduction   Introduction   Introduction       

1.11.11.11.1 BackgroundBackgroundBackgroundBackground    

Energy is an essential commodity in our lives. The world’s demand for energy is 

constantly growing with technological and industrial development and urbanisation. A 

substantial part of the future growth in energy demand will be in developing countries, for 

the improvement of people’s living standards. The total global primary energy 

consumption in 2004 was 446.442 quadrillion (1015) British thermal units (BTUs) (1 BTU 

= 1055.1 joules) (EIA 2004). The increase in energy consumption between 1994 and 

2004 continued at an average annual rate of 2.2%. More than half of global energy 

consumption takes place in America and Europe, resulting in a very uneven distribution 

of worldwide energy consumption. 

 

The building sector, consisting of residential, commercial, and institutional buildings, is 

the highest energy user among the three energy-using sectors: transportation, industry, and 

buildings. In the EU, the building sector represents more than 40% of the total energy 

demand (COM 2001). The global energy demand in the building sector has been 

increasing at an average of 3.5% per year since 1970 (DOE 2006). The growth of energy 

use in buildings is expected to continue over the long term as a result of population 

growth and also of urbanisation.  

 

Lighting is a large and rapidly growing source of energy demand. Lighting is a substantial 

energy consumer, and a major component of the service costs in many buildings. The 

International Energy Agency (IEA), which is the energy forum for 27 developed 

countries, conducts a broad programme of energy research, data compilation, and 

publications. According to an IEA study, global grid-based electric lighting consumed 

about 2650 TWh of electricity in 2005, the equivalent of 19% of total global electricity 

consumption (IEA 2006). Currently, more than 50% of the electricity used for lighting is 

consumed in IEA member countries, but it is expected that this will change in the near 

future because of an increase in the use of electricity for lighting in non-IEA countries. 

The demand for electric lighting in developing countries is increasing as a result of rising 

average illuminance levels, as a result of increasing household income in those countries, 

and also because of the new electrification of regions with no electric lighting at the 

moment.  

 

The rapid growth of energy consumption has raised concerns about the energy security 

and environmental impact of the use of energy worldwide. For example, the United States 

and Europe together consume almost 40% of the world’s energy supply, although they 

produce only 23% of it. Europe is dependent on imports for about half of its total energy 

needs.  With the current trend in energy use, the EU expects 65% of its energy needs to 

be fulfilled by imports, which poses critical challenges in the sphere of energy security 

(Belkin 2007).    
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The acceleration of the increase in the concentration of greenhouse gases in the 

atmosphere has caused the warming of the globe by more than half a degree Celsius 

during the last century and it will lead to warming of at least a half a degree more over the 

next few decades (Stern 2006). Energy is the main factor in climate change, contributing 

the major portion of greenhouse gas emissions (IPCC 2007). Developed nations are the 

source of most greenhouse gas emissions, but this may change in the future as developing 

countries drive their economic development with fossil energy. 

 

Energy efficiency is one of the most effective solutions in solving the adverse effects and 

challenges of rising energy demands. Increasing energy efficiency can bring opportunities 

to limit the rate of increase of electric power consumption, to reduce the need for capital-

intensive supply investments, and to mitigate climate change. As electric lighting is one of 

the major consumers of electricity in buildings, energy-efficient lighting can make a 

substantial contribution to the overall energy efficiency of buildings. 

 

There is a large range of technological options available to achieve energy savings in 

electric lighting. These include the use of more efficient lamps and ballasts, luminaires 

with a high light output ratio, the use of lighting control systems, and the increased use of 

daylight in indoor lighting. The replacement of incandescent lamps by fluorescent lamps 

in the residential sector can bring substantial energy savings. In commercial buildings, 

savings can be achieved by replacing the old T8 fluorescent lamps with T5 fluorescent 

lamps in combination with electronic ballast. The introduction of new innovative LED 

light sources is expected to accelerate savings in the future. (Publication VI) 

1.21.21.21.2 OOOObjectives of the workbjectives of the workbjectives of the workbjectives of the work    

The first objective of the work was to review different aspects of lighting quality and 

energy efficiency and to find out ways to improve the efficiency of electric lighting in 

buildings. The second objective was to test the existing technologies for efficient lighting 

and to evaluate the existing codes and standards. This was done through photometric and 

electrical measurements conducted in office and classroom environments. The third 

objective of the work was to examine the new opportunities provided by LED technology 

in lighting in developing countries and to compare LED lighting with the existing fuel-

based lighting. This included an assessment of different renewable energy sources for 

rural lighting in developing countries. 
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2222 State of the artState of the artState of the artState of the art    

2.12.12.12.1 Electric lighting in buildingsElectric lighting in buildingsElectric lighting in buildingsElectric lighting in buildings    

Electric lighting continues to be a major source of electricity consumption in buildings 

(IEA 2006). On the basis of a compilation of estimates for 41 countries representing 

approximately 63% of the world’s population, Mills (2002) estimated that national 

lighting electricity use in developed countries ranges from 5% to 15% of their total 

electricity use, while in developing countries the value can be as high as 86% (Tanzania). 

The amount of electricity used for lighting in buildings differs according to the type of 

building. In some buildings, lighting constitutes the biggest single category of electricity 

use. According to Mills (2002), lighting is the main component of electricity consumption 

in the service sector in IEA member countries, consuming from 39% to 61% of the total 

service sector electricity use. Bertoldi and Atanasiu (2006) conducted a query for national 

energy efficiency experts in EU countries and reported that the share of lighting 

consumption of the total electricity consumption in residential buildings in EU member 

states ranges between 6% and 18% but the share is as high as 35% in one of the newest 

member states (Romania). In industrial buildings, the share of lighting electricity of the 

total electricity consumption is quite low, because of the large amount of electricity 

consumed in industrial processes. The worldwide consumption of lighting electricity out 

of total electricity consumption in industrial buildings was 8.7% in 2005 (IEA 2006).  

 

In the residential sector, the dominant light source is still the incandescent lamp with low 

luminous efficiency. Incandescent lamps had a per household average share of 75% in 

domestic lighting in IEA countries in 2005 (IEA 2006). The share of incandescent lamps 

out of all lamps in domestic lighting varies from country to country. In residential 

buildings in the United States, incandescent lamps constituted 86% of the 4.6 billion 

lamps used and they consumed 90% of the total residential lighting electricity in 2001 

(Navigant 2002). Australian/New Zealand households have a similar trend of dominance 

by incandescent lamps. In Japan, the most used light source in the residential sector is the 

fluorescent lamp, with a 65% share. In Russia, on the other hand, incandescent lamps 

provide almost all of the residential lighting. This is not very common for the residential 

lighting of other non-OECD countries, where the proportion of fluorescent lamps relative 

to other lamp types is relatively high (IEA 2006). A survey of household energy use in five 

major Chinese cities in 1999 (Brockett et al. 2000) reported that incandescent lighting 

accounted for 56% of residential lighting electricity use; the rest was distributed between 

fluorescent lamps and  compact fluorescent lamps (CFLs). The average lamp luminous 

efficiency is low in those countries dominated by incandescent lamps compared to the 

countries where fluorescent lamps possess a larger share.  

 

Fluorescent lamps are the most common light sources in commercial buildings (e.g. 

offices, educational buildings, hospitals, libraries, shopping malls etc). Fluorescent lamps 
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are commonly used in open space facilities such as open spaces for work or shopping. 

Fluorescent lamps provided 76.5% of the total lighting in OECD commercial buildings 

in 2005 (IEA 2006). Similarly, fluorescent lamps were the major consumer of US 

commercial lighting electricity in 2001 (Navigant 2002), accounting for 56% of lighting 

energy use, while incandescent lamps consumed 32% and high intensity discharge (HID) 

lamps 12%. The share of fluorescent lamps of the total lumen output was 78%, while 

incandescent and HID lamps provided only 8% and 14%, respectively. European office 

buildings mainly use fluorescent lamps, and linear fluorescent lamps (LFLs) are the 

dominant type. However, in a comparison of existing office lighting with new installations 

in three European countries (Belgium, Germany, and Spain), it is found that the existing 

installations in Belgium and Spain still have sizeable numbers of other than fluorescent 

lamp luminaires (Tichelen 2007). In the non-OECD commercial sector, the share of 

incandescent lamps is even lower than that of the OECD commercial sector. The 

estimated share of incandescent and halogen lamps in non-OECD commercial lighting 

was only 4.8% in 2005 (IEA 2006).   

 

The average luminous efficacy of light sources in industrial buildings and industrial plants 

is highest among the residential, commercial, and industrial lighting sectors. The reason 

is the high level of use of energy-efficient fluorescent lamps and HID lamps in industrial 

lighting. According to IEA (2006), 490 TWh of electricity was consumed in 2005 to 

produce 38.5 Plmh for global industrial lighting at an average light source luminous 

efficacy of 79 lm/W. Similarly, the average light source luminous efficacy of the Canadian 

and US industrial lighting sector was estimated to be 80.4 lm/W and that for OECD 

European countries 81.9 lm/W. Fluorescent lamps account for about 62% of OECD 

industrial lighting, HID lamps for 37%, and other lighting sources for 1%. The US 

industrial sector has a similar trend to other OECD countries in the distribution of lamps 

used for industrial lighting, with fluorescent and HID lamps accounting for 67% and 31% 

respectively and only 2% of lamps being incandescent (Navigant 2002). Similarly, 

Australian industrial lighting is dominated by fluorescent lamps, which account for 55%, 

and the majority of the remaining 45% is accounted for by HID lamps (IEA 2006). 

Outside OECD countries, Chinese industrial lighting has a similar combination of lamps 

to Europe. The use of T5 fluorescent lamps in industrial lighting is higher in China than 

in Europe. In Russia, HID lamps dominate in industrial lighting. In Russian industrial 

buildings, only 36.5% of lighting is provided by fluorescent lamps, while 56.3% is 

provided by mercury vapour HID lamps and the rest by other HID lamps and 

incandescent lamps. As a result of the poor quality of the lamps used, the average 

luminous efficacy of light sources in Russian industrial lighting was 61 lm/W in 2000, 

which is far behind the average values in Europe and America. (IEA 2006) 

 

The lighting energy intensity (kWh/m2) in buildings depends not only on the 

characteristics of the lamps used, but also on the occupancy patterns and lighting levels 

provided. Residential buildings often use the least efficient light sources but they 

consume the lowest energy per square metre of area per year because of the short average 
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operating times. The lighting practices of each country and region also have a great effect 

on the lighting energy intensity in buildings. For example, the average luminous efficacy 

of lamps in Japanese households was the highest among OECD countries in 2005 but the 

lighting electricity consumption per square metre was not among the lowest as a result of 

long burning hours and high average illuminance levels (IEA 2006). Among commercial 

buildings, the average electricity consumption for lighting per square metre is highest in 

healthcare buildings, because of their long operating periods. Commercial buildings in 

Europe have quite short operating hours, while the operating hours of North American 

commercial buildings are longer than in Europe, Japan/Korea, and Oceania. The average 

lighting energy intensity in commercial buildings in the United States was 60.9 kWh/m2 

in 2001 and in Canada 80.2 kWh/m2 in 2003 (Navigant 2002, IEA 2006). Non-OECD 

commercial buildings consume electricity for lighting with the lowest average among all 

the regions, the average consumption being 24.1 kWh/m2 in 2005 (IEA 2006). 

 

The main idea of energy-efficient lighting is to reduce the amount of electricity used 

without compromising on the quality of lighting. Savings can be achieved by increasing 

the efficiency of the lighting system components, and also by using the right amount of 

light when it is needed and where it is needed. Technological options are available to 

achieve energy savings in lighting. These options include the use of more efficient lamps, 

more efficient ballasts, efficient luminaires, the use of lighting control systems, and greater 

use of daylight. The introduction of new innovative LED light sources is expected to 

accelerate savings in lighting. The technological potential of savings can only be 

transformed into practice if the application of technology is economically viable. 

 

In the residential sector, replacing incandescent lamps with fluorescent lamps (LFL or 

CFL) has the largest potential for energy savings. This is due to the higher luminous 

efficacies of fluorescent lamps compared to incandescent lamps. The metering campaign 

conducted in French households before and after the replacement of the majority of 

incandescent lamps with CFLs showed that the consumption of electricity for lighting 

was reduced by an average of 74% (ECODROME 1998). 

 

In office lighting, substantial electricity savings can be achieved by substituting 

halophosphate fluorescent lamps with triphosphor fluorescent lamps and by using energy-

efficient ballasts with dimming control (Tichelen 2007). A 35% improvement has been 

presented in the efficiency of a T5 fluorescent lamp luminaire using a mirror louvre 

fixture over an equivalent T8 mirror louvre fixture while using high-frequency ballast and 

a standard aluminium reflector. The corresponding improvement in efficiency shown 

over a luminaire of the same type with conventional magnetic ballast was about 65% 

(Govén 1997). Jennings et al. (2000) compared the energy savings and effectiveness of 

various combinations of occupant detection and the integration of artificial light and 

daylight in office buildings. They found that occupancy sensors, which turned the lights 

off after a 15-20-minute period of no occupancy, achieved lighting energy savings of 20-
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26% compared to manual switching. An additional saving of about 20% was achieved with 

a daylight-linked lighting control system.  

 

The lighting upgrading carried out through the European GreenLight programme in a 

wide range of buildings (schools, offices, airports, supermarkets, etc.) showed cost-effective 

saving potential in existing buildings (EC 2007). Substantial potential for saving energy 

using the available technology has been reported in the EU SAVE project (Novem 1999). 

It was found that upgrading old European office lighting systems to the current typical 

lighting technology would give energy savings of between 20% and 47%, and upgrading to 

the current best practice lighting would give savings from 45% to 68%, depending on the 

country. In schools, the upgrading of all existing old lighting to typical current practice 

systems would result in energy savings of 30% across the European Union. 

 

Codes and legislation on energy efficiency have been introduced in different countries to 

encourage the efficient use of lighting energy. The most common codes that provide the 

guidelines for designing and installing lighting systems in buildings set the maximum 

allowable installed lighting power density. Energy codes for commercial buildings in US 

states are usually based on the American Society of Heating, Refrigeration, and Air-

Conditioning Engineers’ (ASHRAE) codes or the International Energy Conservation 

Code (IECC), but California has its own code, called Title 24 (Title24 2007). ASHRAE 

and the Illuminating Engineering Society of North America (IESNA) developed a 

voluntary building code for lighting in commercial buildings in the United States 

(ASHRAE 2004). The ASHRAE code specifies maximum lighting power density (LPD) 

limits in terms of watts per square metre. For example, the maximum permissible LPD for 

office buildings is 10.8 W/m2 in the ASHRAE 90.1-2004 code. Title 24 considers the 

luminous efficacy of lighting systems (lm/W) in defining efficient lighting. The 2005 

version of the Title 24 code for residential lighting requires the efficacy of a lighting 

system to be more than 40 lm/W for lamps rated less than 15 W, more than 50 lm/W for 

those of 15-40 W, and more than 60 lm/W for those higher than 40 W. United Kingdom 

building codes for both domestic and commercial lighting evaluate efficiency as the 

luminous efficacy of a lighting system,  whereas Mexico and China have building codes 

for lighting energy performance specifying the requirements in LPD limits expressed in 

watts per square metre (IEA 2006).   

 

In addition to lighting power density limits, the control of time of use and the utilisation 

of daylight are important factors influencing lighting energy use. The metric that 

incorporates all these elements and represents the lighting system’s performance is the 

annual energy intensity, expressed in annual energy consumption per unit area (kWh/m2 

per year). The International Energy Conservation Code (IECC) 2003 for commercial 

buildings specifies that lighting controls are required for each area, and each area must 

have dimming control and automatic lighting scheduling (DOE 2005). The most recent 

versions of the ASHRAE and IECC codes, which are followed by most US states, also 

include lighting control and daylight utilisation in their requirements. Four European 
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countries (Flanders-Belgium, France, Greece, and the Netherlands) used a detailed 

calculation procedure for lighting dimensioning even before the adoption of the 

European Union’s Energy Performance in Building Directive (EPBD), each calculation 

procedure estimating the overall average energy consumption for the lighting in buildings 

(ENPER-TEBUC 2003). The EPBD directs member countries to use a comprehensive 

method to calculate the energy consumption of buildings and incorporate mandatory 

minimum energy efficiency requirements for all building types (EC 2002). 

2.22.22.22.2 FuelFuelFuelFuel----based lightingbased lightingbased lightingbased lighting    

There are still more than 1.6 billion people who lack access to an electricity network and 

hence have to use fuel-based lighting to fulfil their lighting needs (IEA 2002, Mills 2002). 

Almost all of these people live in the developing countries, with four out of five living in 

rural areas (IEA 2002). 

 

Electricity networks in most developing countries are limited mainly to urban areas. In 

the rural areas of sub-Saharan countries, only 2%-5% of the population is supplied with 

electrical networks. Grid connectivity is somewhat higher in countries such as Brazil, 

Bangladesh, India, Morocco, and South Africa, with 20%-30% of the rural population 

having access to electrical networks (Martinot 2002). Less than 40% of urban households 

in Africa are supplied with electricity (ABB 2005). The electrification rate in developing 

countries has been increasing continuously. However, the number of households without 

electricity is also growing because of population growth. Between 1970 and 1990, 18 

million people in sub-Saharan Africa were newly supplied with electricity, but the total 

population growth at the same time was 118 million (Douglas 1997). Furthermore, even 

if houses are electrified, many homes have only intermittent access to power as electricity 

blackouts are frequent, hence creating a need for alternative energy sources. For example, 

in the Indian state of Madhya Pradesh, over 90% of electrified rural households use 

kerosene as a backup fuel for lighting (IEA 2002). 

 

Fuel-based light sources include candles, oil lamps, ordinary kerosene lamps, pressurised 

kerosene lamps, biogas lamps, propane lamps, resin-soaked twigs, etc. The most widely 

used fuel-based light sources in developing countries are ordinary wick-based kerosene 

lamps. For example, nearly 80 million people in India alone light their houses using 

kerosene as the primary lighting medium (Shailesh 2006). In addition to providing poor 

lighting quality, fuel-based lighting is inefficient, expensive, and causes respiratory and 

cardiac problems as a result of the smoke produced (IEA 2006). IEA (2006) estimates that 

the average per capita light consumption (lumen hour/ person) of people with access to 

electricity is more than 500 times higher than that of people without access to electricity.   
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3333 Improvement in lighting quality and eImprovement in lighting quality and eImprovement in lighting quality and eImprovement in lighting quality and energy savingsnergy savingsnergy savingsnergy savings using  using  using  using 

modern technologymodern technologymodern technologymodern technology    

3.13.13.13.1 Office lOffice lOffice lOffice lighting qualityighting qualityighting qualityighting quality    

Lighting quality has various aspects and it involves much more than just visibility. The 

proposal of Veitch &Newsham (1996) defines lighting quality as the degree to which the 

luminous environment supports the following requirements of the people who will use 

the space:  

• visual performance;  

• post-visual performance (task performance and behavioural effects);  

• social interaction and communication;  

• mood state (happiness, alertness, satisfaction, preference);  

• health and safety;  

• aesthetic judgments (assessments of the appearance of the space).  

 

According to this definition, lighting quality is not directly measurable, but it focuses on 

the interaction between the lit environment and the person in that environment. Lighting 

quality is dependent not only on the properties of the light but also how that light is 

delivered to the space. The main lighting quality issues considered in lighting design are 

glare, uniformity of luminance, colour temperature, and colour rendering. Good lighting 

quality is characterised by luminance uniformity, the absence of glare, and the ability to 

give a pleasant colour appearance. (Publication II)  

 

The illuminance level in office lighting has to be sufficient to provide a comfortable and 

efficient working environment. Many studies investigating the acceptability of different 

illuminance levels in offices have shown a trend of increased satisfaction with higher light 

levels, followed by a decrease in satisfaction at the highest light levels. Katzev (1992) 

measured subject behaviour in a variety of computer-presented tasks in four different sets 

of lab conditions. Most of the subjects preferred illuminance levels between 450 lx and 

550 lx, showing dissatisfaction when exposed to higher light levels (1000 lx). In a meta-

analysis of several studies, Gifford, Hine, and Vietch (1997) showed that there is a 

relationship between rising illuminance levels and the performance of office-type tasks. A 

high illuminance level may allow better visual performance, but at the same time create 

visual discomfort (Muck and Bodmann 1961). High luminances can produce discomfort 

glare. The European standard (EN12464-1 2002) recommends that the CIE Unified 

Glare Rating (UGR) value should be less than 19 for general offices. The same upper 

value for UGR is given in the CIBSE (1997) code for interior lighting. Luminance ratios 

of no more than 3:1 (i.e. task brighter than surround) for close objects and 10:1 for distant 

objects in office lighting are given in the IESNA recommendation (Rea 2000). The 

European standard recommends a luminance uniformity of greater than 0.7 around task 

areas and greater than 0.5 for the immediate surrounding areas (EN12464-1 2002). 
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The choice of light source colour temperature, which describes the colour appearance, is 

a matter of psychology, aesthetics, and of what is considered to be natural (EN12464-1 

2002). In warm climates a cooler light colour appearance is generally preferred, whereas 

in cold climates a warmer light colour appearance is preferred. Lamps with a higher 

colour-rendering index (CRI) make people and objects appear more natural and bright. 

Lower illuminances are required from lamps with good colour rendering properties to 

achieve judgements of equivalent brightness (Kanaya 1979).  

 

Through the discovery of a novel photoreceptor cell in the eye (Berson et al. 2002), it is 

expected that light entering the human eye also has non-visual biological effects on the 

human body. When the biological effects are taken into consideration, the rules for good 

and healthy design can be different from those for conventional design. The increasing 

knowledge of the non-visual effects of light may result in new design rules for good-quality 

lighting. However, the present understanding of these effects is not yet sufficient.  

3.23.23.23.2 EnergyEnergyEnergyEnergy----efficient lightingefficient lightingefficient lightingefficient lighting    

Energy-efficient lighting involves a reduction in the amount of energy used for lighting 

while keeping the lighting quality the same or even better. Energy-efficient measures for 

lighting involve a reduction in the amount of electricity consumed by the lighting 

equipment and providing the right amount of light where it is needed and when it is 

needed. (Publication II) 

 

Through the more efficient use of lighting energy it is possible to limit the rate of increase 

of electric power consumption, reduce the economic and social costs resulting from 

constructing new generating capacity, and reduce the emissions of greenhouse gases and 

other pollutants. At the moment fluorescent lamps dominate in office lighting. Compared 

to traditional halophosphate fluorescent lamps, tri-phosphor fluorescent lamps provide 

more light using less energy, while offering improved colour rendering, and the 

distribution of light is uniform for more effective illumination of the task area. The 

consumption of energy is further reduced if these lamps are used with electronic ballasts. 

Employee health benefits can be realised from electronic ballasts, which have less flicker 

and noise, reducing the risks of time lost as a result of headaches and stress. (Publications 

II, and III) 

 

The use of occupancy sensors, manual dimming, automatic switching, and dimming 

according to daylight enables energy savings to be made by minimising the unnecessary 

use of artificial lighting. A study of seven different open-plan office buildings equipped 

with modern lighting equipment and controls suggested that the energy savings associated 

with user control are not achieved at the expense of comfort. The occupants of those 

buildings with efficient lighting installations had positive perceptions of the lighting 

quality (Moore et al. 2003). 
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Veitch and Newsham (1997) examined the relationship between lighting quality and 

energy efficiency and found that energy-efficient lighting and good-quality lighting can be 

compatible. People preferred low-energy lighting designs, even designs with lighting 

power densities below energy code levels. They also found a clear pattern of evidence that 

supports the adoption of energy-efficient electronic ballasts. Task performance and visual 

performance were better with electronic ballasts than magnetic ballasts. 

 

Katzev (1992) measured people’s behaviour during varied computer-presented tasks to 

investigate productivity, preferences, and the affective impact of energy-efficient lighting 

systems. The participants were exposed to four different sets of lighting conditions during 

a normal working day, spending over an hour and a half in each set of lighting conditions. 

At the end of the task in each set of lighting conditions they were asked to adjust the 

lighting level to their most preferred and acceptable setting. The findings indicate that it 

is possible to introduce more energy-efficient lighting systems into contemporary office 

environments that will both appeal to office employees and maintain high levels of visual 

performance.  

3.33.33.33.3 Renovation of auditoriumRenovation of auditoriumRenovation of auditoriumRenovation of auditorium        

3.3.1 Introduction 

The lighting installations in the auditoria of the Department of Electrical and 

Communications Engineering of Helsinki University of Technology, which were almost 

40 years old, were renovated in 2006. The old lighting installations consisted of 

luminaires with T12 lamps driven by electromagnetic ballasts. The nominal voltage of the 

ballasts was 220 V but the nominal supply voltage nowadays is 230 V. Hence they were 

working on an overvoltage, resulting in thermal losses. The dimming was performed with 

voltage variation. A separate cathode heating transformer was provided to maintain full 

cathode heating of the lamps at all times the circuit was on, resulting in additional power 

losses. 

 

The study was carried out in one of the auditoria where the old luminaires were replaced 

with new T5 lamp luminaires with electronic ballasts. The new luminaires were Office 

NOVA 240TCS 2xTL5-49W, optics D6 by Idman Philips. The dimmable electronic 

ballast was Helvar 2x49si. The Digidim lighting control system uses the DALI protocol. 

 

In addition to the “normal” lighting, additional luminaires with Philips ActiViva lamps 

were installed. The lighting can thus be provided by the 4000 K lamps or by ActiViva with 

17,000 K, or as a mixture of these two lamps. All the luminaires are dimmable, so the 

colour temperature of the mixed lighting can vary between 4000 K and 17,000 K. 

(Publication III)   
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3.3.2 Measurements 

Photometric and electrical measurements were taken before and after the renovation. The 

measured quantities were illuminance (lx) on the desks, luminance distribution through 

the room (cd/m2) measured from the lecturer’s point of view, unified glare ratio (UGR), 

power consumption, and luminaire output ratio. 

 

Illuminances were measured with an illuminance metre “LMT Pocket Lux 2” while 

luminances and UGR were measured with a luminance mapping system called Photolux. 

Photolux consists of a digital camera with a fish-eye lens and software. The camera is 

calibrated in luminance and the Photolux software integrates the calibration results and 

produces luminance maps (Dumortier et al. 2005). The luminous flux of the lamps and 

luminaires was measured in an integrating sphere. The spectral power distributions were 

measured with an Ocean Optics High Resolution Spectrometer HR 4000.  

3.3.3 Results 

Table 1 shows the results of the photometric and electrical measurements. Illuminance 

was measured in both cases (before and after renovation) when the lamps were at full 

power. The luminous fluxes of the old lamps and luminaire were measured separately. 

The luminaire output ratio was then calculated by dividing the flux from the luminaire by 

the sum of the fluxes of the individual lamps of the luminaire. The calculated value of the 

luminaire output ratio for the old luminaire was 0.39. The luminaire output ratio of the 

new luminaire was 0.74, according to the manufacturer. As a result of the efficient design 

and improved materials for the reflectors, the new luminaires have a much higher 

luminaire output ratio (Publication III).  

 

Table 1. Photometric and electrical values of the lighting installation measured before 

and after the renovation (Publication III). 

    Before  After 

Photometric values     

  Illuminance (lx) 428 974 

  Luminaire output ratio 0.39 0.74 

  Average luminance (cd/m
2
) 45 103 

  UGR 14 21 

Electrical values     

  Power (W) 10,571 7,383 

 

The illuminance was more than doubled after the renovation and at the same time the 

power consumption was reduced by 30%. The European standard (EN12464-1 2002) 

recommends that the illuminance in lecture halls should be 500 lx and UGR value 

should be less than 19. The preset value for the luminaires during an ordinary lecture is 

that they are dimmed to 80% power level. This will increase the energy savings, but is not 

considered in the power consumption of Table 1. The surface brightness of a T5 lamp is 
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higher than that of a T12 lamp. Therefore the UGR calculated from the lecturer’s point 

of view is above the recommended level after the renovation. (Publication III) 

 

The correlated colour temperature (CCT) of the old lamps was about 4000 K and the 

colour rendering index (CRI) was 63. The colour rendering index of the new lamps is 

CRI>80. The total power consumption of the old luminaire was 121 W at a 230 V supply 

voltage and 111 W at a 220 V supply voltage. The luminous fluxes were 2142 lm and 

2062 lm, respectively. 

 

The spectral power distributions of the new installed lighting are shown in Figure 1. One 

curve is with ordinary lamps with a correlated colour temperature of 4000 K, and the 

other when ActiViva lamps with a colour temperature of 17,000 K are used. The colour 

rendering index is CRI>80 in both cases.  
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Figure 1. Spectral power distributions of the lighting measured on the desk in front of the 

auditorium for the 4000 K and 17,000 K lamps (Publication III). 

3.43.43.43.4 EfficEfficEfficEfficient lighting in officesient lighting in officesient lighting in officesient lighting in offices    

3.4.1 Measurements in the office rooms 

A study of lighting electricity use was carried out in the office rooms of an extension 

building of the Department of Electrical and Communication Engineering at Helsinki 

University of Technology. This four-storey building, occupied by the Lighting Laboratory 

(later Lighting Unit), was built as a demonstration building for lighting research. The 

rooms of the building are equipped with a variety of lighting control systems including 

both manual systems and the newest technologies for the integration of artificial and 

natural lighting. 
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Three rooms (G435, G437, and G438 & 439), each with a different lighting control 

system, were chosen for the measurement and assessment. All the rooms were equipped 

with T5 (35 W and 28 W) fluorescent lamps (CCT = 3000, and CRI>80). Table 2 

illustrates the details of the luminaires and control systems used in the test rooms. 

 

Table 2.  Lighting system descriptions of the office rooms under study (Publication I). 

Room Size 

m
2
 

Luminaires Control Window and 

size 

Shading 

G435 26.30 

4 luminaires with 3 (T5 

28W) lamps in each 

manual up/down 

light control 

West  

5.76 m
2 

venetian 

blinds 

G437 22.40 

4 luminaires with 3 (T5 

28W) lamps in each 

occupancy, daylight, 

manual dimming 

and switch 

South 

7.63 m
2 

laser-cut 

panels *, 

shades 

G438 22.90 

4 luminaires with 3 (T5 

28W) lamps in each 

occupancy, 

daylight**, manual 

dimming and switch 

South 7.7m
2
 

East 1.88m
2 

laser-cut 

panels, 

shades 

G439 14.30 

2 luminaires with 3 (T5 

35 W) lamps in each 

occupancy, 

daylight**, manual 

dimming and switch 

East 

3.73 m
2 

 

venetian 

blinds 

*laser-cut panels on the upper half of the window, slides on the lower part 

**daylight dimming not activated 

 

A Power and Current Transducer “SINEAX M 563” was used for the measurement of the 

electricity consumed by lighting. This transducer is programmable and can measure any 

three variables (voltage, current, and power) of an electrical power system simultaneously, 

generating three analogue output signals. A Data Acquisition Unit (MX 100) from 

Yokogawa was used to convert the output signals of the transducer into digital form. The 

acquisition unit was connected to a PC via a hub and an Ethernet cable. The MX 100 

standard software was used to capture and read the power data via the computer. The 

acquisition unit read the power data from the transducers and recorded them in the 

computer every second. Illuminance measurement (Table 3) was done with illuminance 

meter “LMT Pocket Lux 2” and UGR was measured using the Photolux system. 

 

 

Figure 2.  (A) Power and current transducer and (B) Data acquisition unit 

 
A      B 
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3.4.2 Results 

Power consumption by lighting in the office rooms of the Lighting Laboratory was 

measured during all four seasons of the year and the annual energy consumption was 

calculated on the basis of the measured values. Figure 3 shows the measured power curve 

of three different lighting systems during one day in April 2005. Room G435 uses full 

installed power all the time because it has only a manual up/down lighting control system 

and people do not use the manual up/down system for dimming. Rooms G438 & 439 also 

use full installed power but only when the rooms are occupied. The power curve of room 

G437 can change continuously because the lamps are dimmed according to the daylight. 

The power curve of this room is almost at a zero level when there is no occupancy of the 

room. 
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Figure 3. Power consumption curve for rooms G435, G437, and G438 & 439 (measured 

on 06.04.2005) (Publication II). 

 

The installed LPD was lowest for the room with manual control (G435); see Table 3. The 

LPD of the room where only occupancy control was used during the measurement was 

somewhat higher. The room with daylight dimming and occupancy control had the 

highest LPD of all the three installations; however, for this room the annual lighting 

energy intensity was the lowest of all due to energy savings from the control system (Table 

3). The room with manual control has the lowest working plane illuminance in spite of 

having the highest annual lighting energy intensity. The UGR values in all the rooms are 

below the European standard recommendation. The average working plane illuminance 

levels of all these rooms are higher than the current recommendation level (Publication 

II). The measurements indicate that with the combination of occupancy control and 

daylight-linked lighting control, it is possible to reduce the annual lighting energy 

intensity below 20 kWh/m2. 
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Average savings resulting from the use of control were calculated from the measured 

values of the energy use for one week in each season. The savings are calculated by 

dividing the measured energy consumption by the energy consumption without the use of 

dimming and occupancy control. The average savings were 40% in the room with 

occupancy- and daylight-based dimming control (G437), and 22% in the rooms with 

occupancy and manual dimming control (G438 & 439). 

 

Table 3.  Measured values of illuminance, glare rating, lighting power density, and 

annual lighting energy intensity (Publication II). 

Average Illuminance (lx)  

Rooms Working plane Floor 

 

UGR 

 

W/m
2 

 

kWh/m
2 

G435 575 380 11 14.1 33 

G437 665 390 16.4 16.9 20 

G438 & 439 704 501 11.5 16.3 24 

UGR  Unified Glare Rating 

W/m
2 

 Lighting power density, in W/m
2
 

kWh/m
2 

 Annual lighting energy intensity, in kWh/m
2
 

3.53.53.53.5 Accuracy of Accuracy of Accuracy of Accuracy of the the the the lighting energy calculation methodlighting energy calculation methodlighting energy calculation methodlighting energy calculation method    

3.5.1 EU directive on energy performance of buildings 

The European Commission’s directive for the energy performance of buildings was 

adopted to promote the improvement of the energy efficiency of buildings by imposing 

new energy performance requirements (EC 2002). According to the directive 

(2002/91/EC), every building in the EU has to be tested for its energy efficiency when it is 

constructed, sold, or rented out. The directive also requires every government to apply a 

methodology that calculates the energy performance of buildings. These requirements 

include a calculation procedure and performance limits. For lighting, the methodology 

should include the built-in lighting installation and the positive influence of natural 

lighting should also be taken into consideration. 

3.5.2 Lighting energy calculation procedures 

The lighting energy calculation procedures are devised in the building energy regulations 

to calculate the energy consumption in relation to the energy requirements of the 

building. These regulations also provide guidance on the establishment of the limit for 

lighting energy use. This enables energy-efficient lighting to be used in meeting the 

overall building energy standard. (Publication I) 

 

Most of the countries in the European Union did not have measures for encouraging the 

use of efficient lighting in their building energy regulations in 2003. The building energy 

regulations of only four countries – Greece, France, Netherlands and the Flemish region 

of Belgium – had a detailed calculation procedure for lighting. In these countries, energy 

consumed by lighting in a building could be estimated and included in the overall 
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building energy consumption estimation profile. All the procedures carry out the 

calculation by dividing the building into daylight and artificial light zones and by taking 

into account the different reduction factors for the controls. The calculation in each zone 

is performed by multiplying the installed load by the area of the zone, the burning hours, 

and the different factors dependent on the control system. The Belgian method includes 

the energy consumption in the sensors used for lighting control, which is not considered 

by the other countries in their calculation methods. Another important difference is in the 

way in which daylight is taken into account in the calculation procedure. Although all 

four methods include daylight, the Dutch method includes only a crude ‘daylight zone’ 

allowance. The French calculation is similar but includes an extra factor, ‘climate zone’. 

The Belgian method is more detailed as it includes a ‘daylight zone’ procedure and also 

an option of a detailed daylight calculation. (ENPER-TEBUC 2003) 

 

After the adoption of the Energy Performance of Buildings Directive, the European 

standard EN 15193 (2007) was devised to establish conventions and procedures for the 

estimation of energy requirements of lighting in buildings and to provide a numeric 

indicator for lighting energy requirements used for certification purposes. The standard is 

intended to facilitate the implementation of the energy performance of buildings directive 

by providing the calculation methods and associated materials to obtain the overall energy 

performance of buildings.  

3.5.3 Calculation, measurement, and results 

Calculation and measurement of the energy used by lighting was performed for the rooms 

occupied by the Lighting Laboratory (Publication I, Chapter 3.4.1). The purpose was to 

check the reliability and accuracy of the calculation method by comparing it with 

measured data and to discuss the different parameters used for the calculation. The 

calculations were performed on the basis of the Belgian calculation method (BBRI 2004) 

and European Standard calculation method (EN 15193). The results of the calculations 

and measurements on the lighting energy consumption are presented in Table 4. 

 

The annual electricity consumption for lighting in the Belgian method is calculated by 

summing up the total electricity consumption for the daylight area and artificial light area 

and the possible electricity consumption of all the control equipment.  The annual 

electricity consumption of the daylight area of a room is calculated as: 

( )narmddlmsw

rf

tdrf

rtdl TfTff
A

A
PW ×+××××= __

,

lg_,

_lg_ , 

where W
_dl

  annual electricity consumption in the daylight area of room r, in kWh; 

 P
lgt_r

  calculation value for power for lighting in the entire room in kW; 

 A
f,r_dlgt

  floor area of the daylight sector in room r in m
2
; 

 A
f,r          

  floor area of room r in m
2
; 

 f
sw
  factor for the switching control system; 

 f
m_dl

  factor for the modulation control system in the daylight area; 

 f
m_ar

  factor for the modulation control system in the artificial light area; 

 T
d
  number of daytime operating hours per year; 
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 T
n
  number of night time operating hours per year. 

Similarly, the annual electricity consumption of the artificial light area of a room is 

calculated as: 

( )ndarmsw

rf

artrf

rtar TTff
A

A
PW +××××= _

,

_,

_lg_ , 

where W
_ar

 annual electricity consumption in the artificial light area of room r, in kWh; 

 A
f,r_art

 floor area of the artificial light area in room  r in m
2
. 

The annual electricity consumption for the control equipment in each room is 

calculated as: 
( )( ) ( )( ){ }ndswoutctrndswonctrctr TTfPTTfPW +×−×++××= 8760___ , 

where  W
_ctr

 annual electricity consumption of the control system and sensors that is not yet 

included in the consumption, in kWh; 

P
ctr_on

 power of control equipment during the operating hours, default value for any 

control, ballast, sensor, etc: 5 W; 

P
ctr_out

 power of control equipment outside the operating hours, default value for any 

control, ballast, sensor, etc: 5 W. 

 

The floor area of the daylight sector is the contribution of both vertical and horizontal 

facades. Since none of the rooms concerned had any horizontal or inwardly inclined 

daylight openings, the calculation of the daylight area involves only the calculation of the 

contribution of the vertical daylight openings. The floor area of the artificial light area can 

be calculated by subtracting the floor area of the daylight sector from the total area of the 

room.  

 

The nominal power (Pnom) is calculated by summing up the power of all the lighting 

components. The calculation value for the power for lighting (Plgt_r) is the nominal power 

of the rooms with non-dimmable lighting installations. For dimmable lighting, the 

calculation value also takes into account the lighting level and the reduction factor. The 

burning hours Td and Tn are based on the use of the rooms. The total burning hours for 

office rooms are taken to be 9 hours a day, 5 days a week, 50 weeks a year. The factor for 

the switching control system is taken from the Belgian regulations. Its value is 1 for those 

rooms where there are manual switches and no occupancy sensor system.  It is taken to be 

0.8 for those rooms that have occupancy sensors as well as automatic switches. Factors for 

modulating control systems are taken to be 1 for the areas where there is no dimming. For 

the areas where dimming is possible, the factors are calculated as: 

 

f
m_dl 

= max [0.6; min (1.0; 0.6 +0.4* (A
m
-8)/22)] 

f
m_ar  

= max [0.8; min (1.0; 0.8 +0.2* (A
m
-8)/22)], 

 

where A
m
 is the largest controlled surface area that is dimmed by one sensor in the room, in m

2
. 

 

The European standard calculation method provides both a quick method and a 

comprehensive method to estimate the energy used for lighting. The comprehensive 
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method gives a detailed calculation procedure considering the estimation of daylighting 

and occupancy sensing.  The total annual energy used for lighting is the sum of the 

annual lighting energy required to fulfil the illumination function and the annual 

parasitic energy required for the lighting controls and the charging circuit for the 

emergency lighting. 

   

The lighting energy required to fulfil the illumination function can be calculated as: 

( ) ( ) ( )[ ]{ } 1000/, ∑ ×+××××= ONDODcntL FtFFtFPW , 

where  W
_L,t

  lighting energy required to fulfil the illumination function and purpose of room, 

in kWh; 

P
n
 total installed lighting power in the room, in W; 

F
C
 constant illuminance factor; 

F
O
 occupancy dependency factor; 

F
D
 daylight dependency factor,; 

t
D
 operating hours during daylight time per year; 

t
N
 operating hours during non-daylight time per year. 

  

The lighting energy required to fulfil the parasitic energy required for the lighting control 

and charging circuit for the emergency lighting can be calculated as: 

 

{ ( )[ ]{ } ( ) } 1000/, ememNDypctP tPtttPW ×++−×=∑ , 

where  W
_P,t

  estimate of the parasitic energy for lighting control, in kWh; 

P
pc
 total installed parasitic power of the controls in the room, in W; 

t
y
 time taken for one standard year to pass, taken as 8760 h; 

P
em

 total installed charging power of the emergency lighting luminaires in the room; 

t
em 

operating hours during which the emergency lighting batteries are being 

charged, in h.
 

 

The standard gives a detailed method for the determination of the daylight dependency 

factor and occupancy dependency factor. The calculation of the daylight dependency 

factor involves the segmentation of the building into zones with and without daylight 

access. The impacts of room parameters, facade geometry, and outside obstruction on the 

daylight penetration are also considered in the calculation of the daylight dependency 

factor. The occupancy dependency factor calculation process considers the size of the 

room, type of occupancy control system, and the time that the space is unoccupied. 

 

The energy measurements were performed over a period of eight weeks (two weeks in 

each season). The annual average consumption was calculated on the basis of the 

measured values. The measurement system and method are given in Chapter 3.4.  

 

The calculation methods consider all the aspects of lighting energy use in a building. The 

calculation for the daylight dependency factor in the European standard calculation 

method is more detailed and involves more factors than the Belgian method. 
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Table 4.  Calculated and measured values of lighting energy consumption in the office 

rooms of the Lighting Laboratory. 

 A
f,,r

 W
inst 

W
lgt-r/m2 

W
EN 15193 

Room (m
2
) (W/m

2
) (kWh/m

2
) (kWh/m

2
) 

W
mes 

(kWh/m
2
) 

G435 26.30 14.1 32 30 33 

G436 14.50 16.1 21 21 27 

G437 22.40 16.9 23 23 20 

G438 22.90 16.2 37 33 

G439 14.30 16.4 37 35 
24 

G440 14.20 13.7 32 27 

G441 19.00 18.0 38 32 
39 

G442 45.10 7.6 15 19 20 

Total 179 

Average 

14 

Average  

27 

Average 

26 

Average 

27 

W
inst

  installed power for lighting per square metre of room, in W/m
2
; 

W
lgt-r/m2

   calculated annual lighting energy consumption per square metre of room based on 

Belgian calculation method, in kWh/m
2
; 

W
EN 15193

  calculated annual lighting energy consumption per square metre of the room based on 

European standard calculation method, in kWh/m
2
; 

W
mes

  measured value of annual lighting energy consumption per square metre of the room, 

in kWh/m
2
. 

 

The total average measured value of the energy consumption is similar to the values 

calculated using two different methods. Although the average value is similar, there is a 

significant difference between the calculated and measured values in some rooms. One of 

the reasons for this difference between the measured and calculated values is that some 

workers in those rooms had different working times during the measurement period than 

the working time assumed for the calculation. For example, the lights were turned on for 

a longer period than assumed in rooms G440 & 441, while the lights were turned on for a 

shorter period than assumed in rooms G438 & 439.  

3.63.63.63.6 ConclusionConclusionConclusionConclusionssss    

A good lighting design involves not only the quantity and quality of lighting but also the 

amount of energy used to illuminate the space. With the increase in energy costs and 

people becoming more conscious of energy and environmental issues, more attention has 

been given to energy-efficient lighting. Different codes and standards have and are being 

introduced in many countries to restrict building energy consumption for all uses, 

including lighting (Publication II). Significant savings in energy consumption without 

any compromise in visual comfort and the visual performance of occupants can be 

achieved by applying an energy-effective design approach to lighting installations. 
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Electric lighting is provided as a result of a combination of lighting equipment. A modern 

lighting system needs light sources, ballasts, luminaries, and controls. Part of the power 

input to the lighting unit is transformed into light, while the rest is considered as loss. The 

saving of lighting energy requires the use of energy-efficient components, as well as the 

application of control and dimming and the use of daylight. Savings of up to 40% have 

been found with the use of daylight-based dimming and occupancy control. These savings 

have been obtained without compromising the quality of the lighting service. 

 

The renovation of the old lighting installation in the auditorium doubled the illuminance 

while reducing the power consumption by 30%. This saving came as a result of the 

combination of energy-efficient lamps, ballasts, and reflectors. New fluorescent lamps 

with electronic ballasts are more energy-efficient and the ballast losses are smaller. 

Additionally, due to the improved materials and designs, the new reflectors have greater 

efficiency than the old ones.  

 

Measurements in the office rooms showed average electricity savings of 40% with the use 

of occupancy control and daylight-based dimming control. These savings were obtained 

by utilising daylight and turning artificial light off when it was not needed. That shows 

that proper management of the lighting can yield significant savings without reducing the 

quantity of light.  

 

The European standard lighting energy calculation procedure uses the more detailed 

method for the consideration of daylight. The calculated value based on the Belgian 

method is equal to the measured value. The total average measured value of energy 

consumption is 4% higher than the calculated value based on the European standard 

calculation method. These results show that a high level of accuracy has been maintained 

in the calculation methods.  
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4.14.14.14.1 Defining basic lighting needs in remote villages Defining basic lighting needs in remote villages Defining basic lighting needs in remote villages Defining basic lighting needs in remote villages inininin    developing developing developing developing 

countriescountriescountriescountries    

The major part of the population in developing countries does not have access to electric 

lighting. Fuel-based lighting is the only option to bring minimal lighting services to such 

areas. Providing grid electricity to the rural areas of many developing countries is a very 

difficult task because of the geographical complexity and lack of financial resources. In 

this scenario, the efficient use of available renewable energy resources and adoption of 

energy-efficient, reliable, and durable lighting systems is essential for people living in 

developing countries.  

 

There are many factors that affect the definition of appropriate lighting for homes in 

remote villages in developing countries. The availability of local energy resources, the cost 

of the lighting technology, and the local people’s prevailing lighting practices should be 

considered in order to make the lighting projects and programmes that are implemented 

sustainable. The defined lighting levels should be suitable and affordable for the rural 

people’s activities and needs. (Publication IV) 

 

The primary function of any home lighting system is to provide a safe visual environment 

for movement around the space, to make it possible to perform visual tasks, and to provide 

a comfortable and pleasant visual environment. On the other hand, the lighting system 

has to be cost-effective, efficient, non-polluting, and easy to clean and maintain. 

 

The standards and guidelines for recommended lighting levels in developed countries 

often categorise the household into different areas and give recommendations on lighting 

levels according to the specific need of each area. However, homes in rural villages do not 

have separate rooms for specified tasks. Usually, the whole family is accommodated in one 

or two rooms and these rooms serve as kitchen, bedroom, study room, dining room, and 

living room. Most of these rural homes use inefficient biomass or petroleum fuel for 

illumination because of a lack of income and the unavailability of other energy resources. 

So rural electrification projects are often the first electrification projects the rural 

community has had, and thus have to aim to provide just minimal but sufficient lighting 

for defined tasks, however, in an affordable and sustainable way. (Publication IV) 

4.24.24.24.2 Lighting in rural Nepali villagesLighting in rural Nepali villagesLighting in rural Nepali villagesLighting in rural Nepali villages    

4.2.1 Introduction 

Around 80% of the 28.5 million population of Nepal live in rural areas, and about half of 

them live in areas which are very remote and difficult to access (Zahnd 2005). As a result 
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of the geographical remoteness, harsh terrain, and low population density, grid 

electrification in scattered rural communities in Nepal is infeasible. Therefore many 

villages in Nepal will not be reached by electricity network extensions within the 

foreseeable future.  

 

The primary energy source used to provide the necessary daily energy supply in Nepal has 

for centuries been firewood, often supplemented by crop residues and animal manure. 

Only 40% of the population has access to electricity, of which 33% relies on the national 

electrical network and 7% on alternative energy resources (CRT 2005). The rest of the 

homes, mostly in rural areas, use kerosene, oil-based wick lamps, or resin-soaked twigs to 

provide minimal lighting for their living conditions. 

4.2.2 Fuel-based lighting 

Currently many homes in rural areas of Nepal without access to electricity are 

illuminated by the use of biomass or petroleum fuel. Many rural communities in Nepal 

do not have access to motorable roads, and porters have to be used to carry materials and 

equipment. Hence the price of commercial liquid fuels (kerosene, oil) increases 

proportionally to the distance to the road. On the other hand, the homes in these 

communities have very low incomes. For example, the Humla district in the north-

western region is one of the most isolated regions in Nepal because of its remoteness and 

geography. Simikot, the district centre of Humla, is 16 days’ walking distance from the 

nearest road. The families and communities in upper Humla have to use a “jharro”, a 

resin-soaked high-altitude pinewood stick, to get minimum but smoky indoor lighting. 

 

 

Figure 4. Open fireplaces for cooking and heating, and light through a “jharro”, a resin-

soaked pine-tree stick. 

 

"Jharro" is gathered by inducing a deep wound in a pine tree, forcing it to produce locally 

a high amount of resin in order to cure the wound. This high resin-content wood layer is 
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cut away after a week and burned in small sticks to generate light. Burning “jharro” sticks 

are typically placed on an elevated stone or mud pile or on a hanging metal plate (Figure 

4) at a height 40-50 cm above the floor. A “jharro” emits thick black smoke that is harmful 

to the respiratory system, resulting in various health problems. The use of firewood on 

open fireplaces for cooking and room heating and the use of “jharros” for lighting 

accelerate the already-occurring deforestation in these villages. 

4.2.3 Solid state lighting 

Light-Emitting Diodes (LEDs) are rapidly evolving light sources. Technical advances 

have greatly enhanced the performance of LEDs in recent years. According to Agilent 

Technologies, the lumens per package value of red LEDs has been increasing 30 times 

per decade, whereas the price is decreasing 10 times per decade (Haitz 2001). Some of the 

current white LEDs have a luminous efficacy of more than 90 lm/W (Cree 2008), which 

is more than five times greater than that of an incandescent lamp. The optoelectronics 

industry development association (OIDA) roadmap has a target of achieving a value of 

200 lm/W by 2020 (OIDA 2002). The other important advantages of LED light sources 

that make them suitable for rural lighting are their lifetimes, which are measured in tens 

of thousands of hours, low power requirements, ruggedness, compact size, and low 

operating voltage. 

 

The idea of using LEDs for lighting the unelectrified rural Nepali villages was initiated by 

the Canadian professor Dave Irvine-Halliday, while he was trying to find solutions for 

lighting houses in villages with no access to electrical networks (Rolex 2006). He saw 

children in Nepali mountain villages trying to read in dark classrooms. That gave birth to 

the Light Up the World Foundation (LUTW), which was the first humanitarian 

organisation to utilise white LEDs to replace fuel-based lighting in developing countries 

(LUTW 2006). In 2000, LUTW started its work by providing LED lighting to homes in 

four small Nepali villages; Thulo Pokhara, Raje Danda, Thalpi, and Norung (Shailesh 

2006). Since then the organisation has lit up more than 14,000 homes in 26 countries, 

including the organisation’s birthplace, Nepal, directly influencing the lives of over 

100,000 people (LUTW 2006). 

 

Since the first home lighting projects in Nepal, LUTW has been helping to light up 

villages by providing LEDs to a local non-governmental organisation, RIDS-Nepal (Rural 

Integrated Development Services - Nepal). RIDS-Nepal uses solar photovoltaic (PV) 

systems and pico hydro power plants with white LEDs to implement lighting in villages as 

part of long-term community development projects.  Until January 2008, RIDS-Nepal 

had electrified seven villages in the remote upper Humla through elementary village 

electrification projects. Six villages generate their energy through solar PV systems and 

one village through a 1-kW pico hydro power plant. In these villages, a total of 561 homes 

with 3,850 people now have minimal indoor electric lighting for about seven hours a day. 

(Publication IV) 
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Two different types of LED luminaires are manufactured for the RIDS-Nepal village 

illumination system. One consists of nine Nichia NSPW510BS white LEDs (low-power 

white LEDs) and the other consists of a single white LED, Luxeon Star from Lumileds 

(high-power LED). All the luminaires are manufactured in Nepal by Pico Power Nepal 

(PPN), a local manufacturing company. The control circuits for the luminaires are also 

designed and manufactured at PPN. (Publication IV) 

4.2.4 Measurements and results 

The luminaires used in the rural villages of the Humla district were measured in the 

laboratory to test their performance. Measurements were also performed for the burning 

“jharro” pine stick. The luminous fluxes of both luminaires were measured in an 

integrating sphere. In order to make a direct comparison between an LED light source 

and the “jharro” light source, the luminous efficacy of a “jharro” was calculated. The 

energy content of the “jharro” was measured using a calorimeter at the University of 

Jyväskylä and the value was converted into equivalent electrical power. The luminous flux 

of the “jharro” was measured in a dark room. Table 5 shows the characteristics of the two 

LED luminaires and the “jharro” pine stick. The measurements indicate that the 

luminous efficacy of the pine stick lamp (0.04 lm/W) is half of the efficacy of a kerosene 

fuel-based lamp (0.08 lm/W (Mills 2005)) and more than 300 times less than that of the 

white LED luminaire used in the villages. (Publication IV) 

 

The differences between the measured and rated values of luminous efficacy among the 

LED luminaires are due to the losses in the driving circuit and in the luminaire. The 

difference is significant in the high-power white LED luminaire as it was driven with a 

lower than rated current, resulting also in a significant reduction in the light output. The 

loss in the driving circuit of the high-power LED luminaire is considerably higher than 

that of the low-power LED luminaire. It indicates the need for the design of more 

efficient and better driving circuits for the high-power LED luminaire.    

 

Table 5. The measured values of power (W), luminous flux (lm), and luminous efficacy 

(lm/W) of the LED luminaires and “jharro”, and rated luminous efficacy of the 

LEDs as given by the manufacturers.(Publication IV) 

Light source type Power 

(W) 

Luminous 

flux 

(lm) 

Luminous 

efficacy 

(lm/W) 

Rated Luminous 

efficacy of LED 

(lm/W) 

Luminaire with 9 Nichia LEDs 0.73 11 15 29 

Luminaire with  1 Luxeon 

LED 

1.07 14 13.1 38 

“Jharro” (pine stick)  2167 88 0.04  

 

Illuminances in the houses with “jharro” stick lighting were measured in several villages 

in the Humla district. The average illuminance on the floor up to a horizontal distance of 

1 m from the source was 2 lx. In the room corners (floor level), which were more than 1 

m from the burning jharro sticks, the illuminances were less than 1 lx. These low lighting 
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levels make it just possible to move around the room and to do some general work close to 

the light source, but the lighting is not adequate for any visually oriented tasks such as 

reading.  

 

Illuminance measurements were also carried out under LED lighting in the villages. 

Each home in the villages has two luminaires with nine low-power LEDs, and one 

luminaire with a single high-power LED. These homes consist of two rooms of dissimilar 

size, both with low ceilings. The two luminaires with low-power LEDs are installed in the 

bigger room and the luminaire with a single high-power LED is installed in the smaller 

room. The luminaires are installed on the ceiling of the room at a height of about 1.8 m 

from the floor. The average illuminance at floor level in the bigger room with the two 

luminaires was 5 lx, while it was 3 lx in the smaller room with a single high-power LED 

luminaire.  

 

Householders were interviewed to ascertain their reactions to the lighting. According to 

their response, an average illuminance of about 5 lx seemed to be adequate for general 

purposes. It was not possible to read at this lighting level, and any reading task had to be 

done very close to the light source. It was possible to read texts from a book when the 

illuminance level was around 25 lx, which level was achieved by bringing the book near 

to the light source. This was tested by having the local schoolchildren perform reading 

tasks. On the basis of the measurements under “jharro”-based and LED-based lighting 

and considering the local economy and availability of energy resources, it is practical to 

recommend two types of lighting levels for first-time electric lighting in the rural villages. 

An illuminance of about 5 to 15 lx is recommended for general purposes and an 

illuminance level 25≥  lx is recommended for reading and other similar tasks for a first-

time elementary lighting service for home lighting in these communities. (Publication 

IV) 

 

The illuminances under both the luminaires at variable distances were measured in the 

dark room of the Lighting Laboratory. Figures 5 and 6 show the illuminances measured at 

different horizontal and vertical distances from the light sources. When the luminaire 

with low-power LEDs was installed 0.5 m above the illuminated plane, the illuminance 

on the plane directly under the luminaire was 112 lx. Thus it can provide sufficient light 

to read by and to perform other visual tasks. On the other hand, although the illuminance 

on the plane directly under the luminaire was relatively high, the illuminance in adjacent 

areas decreases sharply. The appropriate installation height of the luminaire depends on 

the type of illumination needed. The illuminance on the plane directly under the high-

power LED luminaire was very low compared to that under the luminaire with low-power 

LEDs. However, the decrease in illuminance on a wider horizontal plane is not so sharp 

because of the wide viewing angle (110°) compared to the angle (50°) of the low-power 

LED luminaire. The wide viewing angle of the high-power LED makes the luminaire 

suitable for providing general orientation lighting for a larger area. 
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Figure 5. Illuminance at floor level under the low-power LED luminaire as a function of 

horizontal distance and at three different luminaire mounting heights 

(Publication IV). 

 

 

Figure 6.  Illuminance at floor level under the high-power LED luminaire as a function 

of horizontal distance and at three different luminaire mounting heights 

(Publication IV). 

4.2.5 Technical and economic aspects of solar-powered LED lighting 

The performance and lifetime of the lighting system is dependent on all the components 

associated with it. Usually, rural communities lack the technical skills to install and 

maintain lighting and energy systems. Improved public awareness and training 
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programmes, field research, and the incorporation of the social and cultural needs of 

these communities into lighting system design are essential for the long-term success of 

PV-powered LED lighting systems in remote areas.  

 

Routine checking of the equipment is needed to maintain the quality of the lighting. 

Cleaning the PV panels and luminaires, checking the battery voltage, topping up the 

batteries with rainwater, and cleaning the glass of the luminaire should be done regularly. 

The solar PV modules are the most expensive equipment in a PV system and they have 

the longest lifetime. The monocrystalline PV arrays used in the Humla villages are 

guaranteed by the manufacturer to provide 90% and 80% of their rated power output after 

12 and 25 years, respectively. The climatic conditions are very important factors in 

designing PV systems. Monocrystalline and polycrystalline PV modules have an average 

power output reduction of 0.4% to 0.5% per increased temperature degree (°C) above the 

rated temperature. Similarly, the power output increases compared to the rated power 

when the temperature of a PV module is less than the rated temperature. The design of a 

battery bank depends on the “independence of sunshine” (number of days without 

sunshine). The battery bank has to be large enough to provide energy without being 

charged and without being too highly discharged during the days without sunshine. 

Overcharging and too-low discharging of the battery leads to a shorter life expectancy. 

The charge and discharge controllers protect the battery bank from overcharging and too-

low discharging, which allows the deep cycle lead acid battery used in the villages to last 

for 8-9 years. The charge and discharge controllers manufactured in Nepal have a lifetime 

of about 8-10 years. The whole system is protected against short circuits and overloading 

by an automatic fuse. (Publication IV) 

 

A cost analysis of the two types of LED lighting systems and of the “jharro” lighting used 

in the villages of Humla was performed to compare the costs in terms of per lumen hours 

of light. The capital cost and variable cost of the lighting systems were converted into 

annual costs. In “jharro” lighting, there were no capital costs and the cost involved only 

the amount of “jharro” consumption. The amount of “jharro” consumption per hour in 

“jharro” lighting was measured at Helsinki University of Technology. It was found that the 

amount of “jharro” consumption for one “jharro” lamp giving 88 lumens (Table 5) is 0.27 

kg/hour. Assuming the use of lighting for five hours a day, the annual “jharro” 

consumption can be calculated as 

0.27 kg / hour x 5 hours/day = 1.35 kg / day 

1.35 kg / day x 365 days / year = 493 kg / year 

 

The cost of using a “jharro” in the Humla villages can be assumed as Rs 100 / kg (Rs 100 

is equivalent to 1.42 U.S. dollars). Hence the annual cost of “jharro” lighting providing 88 

lm of light output is Rs 49,275, which corresponds to Rs 307 ($4.36) per klmh (kilolumen-

hour).  
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For the solar-powered LED lighting systems, the capital costs consist of the cost for a solar 

PV array, battery, charge and discharge controllers, wires, switches, LED luminaires, and 

installation costs. The variable costs consist of the cost of maintenance and the costs of the 

replacement of batteries, controllers, and other auxiliaries. The cost analysis was done for 

a 25-year life cycle, assuming the life of solar panels to be 25 years. An example of a solar 

home system with a 12-W solar panel, two deep cycle batteries, a charge and discharge 

controller, luminaires, and switches was taken for the calculation. The cost of each 

component was assumed to be the cost at which they are available in the electrification 

project in Humla. The result of the calculation showed that the cost per klmh was Rs 

15.12 ($ 0.21) for solar-powered lighting with a high-power LED (Luxeon) luminaire, 

while the cost per klmh was Rs 15.59 ($ 0.22) for the lighting system with a low-power 

LED (Nichia) luminaire. 

 

Because of the development of LED technology, the prices of LEDs are decreasing and 

the luminous efficacies of LEDs are increasing. This will further increase the cost-efficacy 

of LED lighting compared to the traditional “jharro” lighting in the future. 

4.34.34.34.3 Energy supply solutions in developing countriesEnergy supply solutions in developing countriesEnergy supply solutions in developing countriesEnergy supply solutions in developing countries    

4.3.1 Renewable energy systems 

 

The lack of electricity and heavy reliance on traditional biomass are hallmarks of poverty 

in developing countries (IEA 2002). Extending electricity networks to rural areas of 

developing countries is very expensive because of their geographical remoteness, lack of 

basic infrastructure, and low population density. Hence, the remote and rural parts of 

many developing countries are not expected to be accessed by electricity networks in the 

near future. (Publication V) 

 

The use of renewable energy systems to produce electricity is becoming a viable option in 

fulfilling the basic energy needs of rural villages. There are a range of innovative and 

sustainable technology solutions which can meet energy needs in developing countries 

(Doig 1999, Gustavsson et al. 2004, Richards 2006). The technologies, which involve 

wind power, solar power, and small-scale hydropower, exploit local resources, operate on a 

small scale, and have the advantage of meeting the needs of widely dispersed rural 

communities (Publication V).  

 

The efficient use of electrical energy is a very important issue in these situations because 

of the low level of power production capacity from these technologies and also because of 

the associated costs. A cost analysis of LED-based lighting systems driven with renewable 

sources in different parts of developing countries has shown them to be cost-effective in 

comparison with the existing options (Jones et al. 2005, Shailesh 2006).  
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The Light Up the World organisation, a pioneer in using LED lighting in rural villages, 

has utilised a number of different energy supply systems to power LED light sources. 

These energy systems include pedal generators, pico hydro, and solar photovoltaic 

systems. The selection of the system depends on the availability of local resources, local 

geographical situation, costs, and the sustainability of the system. (Publication V) 

 

The first village lighting project of LUTW utilised pedal power to charge a battery by 

using a pedal generator (PG). The pedal generator was chosen as it could be operated at 

any time of the day when required, it was economical, easy to maintain, and could be 

manufactured in the place where it is used (Halliday et al. 2000). The PG consists of a 

DC motor used as a generator, a locally manufactured flywheel, a voltage regulator, a 

digital multi-metre, and a poly-fibre belt. The PG system is installed in one home and 

serves eight to twelve other homes. The battery of each home can be recharged with the 

PG by only about 30 minutes of gentle pedalling. The size of the battery is chosen so that 

it is enough to fulfil the daily lighting needs of each home, which is roughly between four 

and five hours per night. (Publication V) 

 

The use of very small-scale hydroelectric generation (pico hydro) has great potential to 

power the villages in many rural areas. If electricity is produced from the estimated 

200,000 traditional water mills existing in rural India, Nepal, and Bhutan, a large number 

of villages in these regions can be illuminated by utilising efficient lighting technologies 

(Craine et al. 2002). With an annual average water runoff of 225 billion m3 from over 

6,000 rivers, Nepal has a technically and economically feasible hydropower potential of 

around 43,000 MW (UNDP 2006). Pico hydro is taken as a sustainable and viable option 

to provide power to rural areas. It exploits local resources and operates on a small scale, 

using flexible and modular equipment manufactured locally. Local manufacturing 

ensures appropriate designs for local settings and reduces the capital costs of the 

equipment. The installation and maintenance costs are low and the technology used is 

simple.  

 

Solar PV systems are often the preferred energy sources for rural electrification. Most of 

the LUTW lighting projects in different developing countries, including Nepal, use solar 

PV arrays to produce electricity. Similarly, most of the lighting projects implemented in 

rural Nepali villages by RIDS-Nepal use solar PV systems. Nepal lies around the 30° 

Northern latitude solar belt, with solar energy presenting a sustainable energy resource, 

with an average insolation of 5.5 – 6 kWh/m2 per day (Zahnd et al. 2005). 

 

The solar PV system consists of a solar panel, a lead acid battery, and a battery charging 

circuit. Depending on the local needs and circumstances, three different approaches have 

been used in the previously mentioned solar PV system projects: a centralised solar 

system, a distributed solar system, and an individual solar system. If the geographical 

conditions of the villages are favourable and the houses are built close to each other, the 

solar PV system of the villages is built as a central PV system. This central PV system 
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consists of a two-axis self-tracking frame which follows the sun’s position, increasing the 

daily energy output by between 30%-40% compared to the output in stationary mode, 

depending on the season. If the houses in the village are scattered, different clusters of 

houses are formed in the village and each cluster is electrified with its own centralised 

solar system. An individual solar system is suitable for widely scattered homes in villages. 

In this case, each home has its own small panel and its own small battery and forms an 

individual solar home system. (Publication IV) 

4.3.2 Life cycle cost analysis 

A simple life cycle cost analysis is used to compare the costs of two different energy supply 

systems used for lighting in rural Nepali villages. The costs of generating capacity are 

calculated for pico hydro and PV solar systems over their entire lifetime by taking into 

consideration the characteristics of each individual case. Initially, the intention of the 

study was to calculate the costs of pedal power systems as well. The pedal power system 

installations in Nepali villages were the first projects of LUTW (started 7 to 8 years ago); 

hence no recent data for their costs are available. On the other hand, a cost comparison of 

the pedal systems with the others would not be meaningful as the pedal systems did not 

last to the end of their expected lifetimes as a result of the mishandling of the systems 

(used by kids as toys for playing, too-low discharging of the battery, wrong connections 

while charging the battery with the pedal generator). Although the normal lifetime of a 

battery used in a pedal system was two years, most of the batteries were out of order after 

six months of operation. (Publication V) 

  

A pico hydro system (1.1 kW) and a PV system (75 W) installed in the Humla district of 

Nepal were chosen for the cost calculation. The cost and lifetime of each component and 

the costs of construction and installation are taken into consideration for the calculation. 

The costs of equipment for both systems are higher compared to those in other parts of 

Nepal because of the transportation costs. All the equipment has first to be carried by 

aeroplane and then by yak or porter to reach the installation site. The construction work 

was partly carried out voluntarily by the villagers. The local labour costs are assumed to 

estimate the cost of voluntary work in the cost calculation of the construction work. The 

life cycle cost is calculated for the actual installed power of the PV and the pico hydro 

system. The costs are given in Nepali Rupees (NRs). (Publication V) 

 

A 20-year life cycle cost (LCC) analysis period is used for each system. Using a discount 

rate of 4%, discount factors are calculated for each year in which costs occurred and the 

costs are converted into present value. The life cycle costs are then converted into cost per 

kilowatt of generating capacity to enable a comparison to be made between the two 

systems. The results of the calculations are presented in Table 6. 

 

The LCC calculation over a 20-year service life does not show any significant difference 

in costs per kW generating capacity between the solar PV and the pico hydro systems. 
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However, the cost calculations depend greatly on the assumptions made and the cost 

varies depending on the systems and condition and context of the villages.  

 

Table 6 Calculation of life cycle cost (LCC) of pico hydro and solar PV systems 

(Publication V). 

Pico Hydro System 

Year Base year cost Discount factor Present value 

0 NRs 520000 1 NRs 520000 

11 NRs 370000  0.65 NRs 240500 

LCC   NRs 760500 

LCC of per kW generating capacity pico  
hydro system NRs 691364 

Solar PV System 

Year Base year cost Discount factor Present value 

0 NRs 38000 1 NRs 38000  

7 NRs 6000 0.76 NRs 4560 

9 NRs 2000 0.703 NRs 1406 

13 NRs 6000 0.601 NRs 3606 

17 NRs 2000 0.513 NRs 1026  

19 NRs 6000 0.475 NRs 2850 

LCC   NRs 51448 

LCC of per kW generating capacity solar  
PV  system NRs 685973 

 

The maintenance and operation costs were not considered in the LCC analysis. There are 

no operating costs associated with a solar PV system. The maintenance costs of a PV 

system, including the costs for periodic inspection and cleaning of the solar panels, 

battery, and circuits, are low. On the other hand, a pico hydro system needs trained 

manpower for its operation and maintenance. Special training has to be given to the local 

people for operation and minor maintenance work. In cases where major maintenance is 

needed, the situation becomes more complicated because of transportation problems. On 

the other hand, the operation and maintenance costs for pico hydro systems can be partly 

collected by making use of their power during the daytime for other purposes, e.g. 

grinding grain and pumping water. 

 

An energy supply system for rural village electrification has to be cheap, easy to maintain, 

and sustainable. Energy technologies that require low maintenance are suitable for 

remote areas because of the unavailability of skilled labour. Although the costs of pedal 

power are very low and the system could work if handled properly, it is found to be very 

unreliable for rural people with a low level of technical knowledge. A solar PV system is a 

more reliable and appropriate technology for small loads and remote rural areas. 

4.44.44.44.4 ConclusionConclusionConclusionConclusionssss    

Connecting the rural and remote areas of developing countries with electricity networks is 

a challenging task and it is not expected to occur in the near future. Only a small 
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percentage of the population in developing countries has access to electric lighting and 

the rest use fuel-based lighting for their basic lighting needs.  

 

The pine stick-based lighting used in rural Humla in Nepal was found to be more than 

300 times less efficient than the new white LED-based lighting. Still, the LEDs currently 

used in the villages are not the most efficient as there are white LEDs on the market with 

a luminous efficacy of more than 90 lm/W (Cree 2008), compared to the 29 lm/W LEDs 

used in the current installations. A whole village of up to 30 homes can be lit with the 

comparative power of one 100-W incandescent lamp. With the continuous advancement 

in the efficiency of LED technology, more light will be available in the future using the 

same amount of energy.  

 

Although the lighting levels provided by the current LED-based lighting systems in rural 

homes are minimal, they can be considered adequate for a first-time elementary indoor 

lighting installation. The appropriate lighting level for homes in remote villages in 

developing countries depends on the current lighting practice, available energy resources, 

and cost. Taking into consideration the current lighting practice and based on 

measurements and interviews, two different illuminance levels were recommended as a 

first-time elementary lighting service for home lighting in rural communities in 

developing countries. 

 

The replacement of fuel-based lighting by electric lighting can be done in a sustainable 

way by using existing and environmentally friendly renewable energy sources such as 

wind, solar, and hydro power. In choosing the appropriate renewable energy technology 

for rural lighting, the reliability and sustainability of the technology in the local context 

are important issues for a successful implementation. Life cycle cost calculations made for 

solar PV and the pico hydro system did not show much difference in the costs over a 20-

year service life. Solar photovoltaic systems are economically competitive but require less 

maintenance than pico hydro and are suited to widely scattered rural areas.  
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5555 Discussion and cDiscussion and cDiscussion and cDiscussion and conclusionsonclusionsonclusionsonclusions    

 

The work started by reviewing lighting quality factors in an office environment and the 

consequences of efficiency measures for lighting quality. Different codes, standards and 

recommendations related to energy-efficient and high-quality lighting introduced in 

different parts of the world were also discussed. Three different control systems were 

compared for energy efficiency and quality of lighting by means of measurements. It was 

found that rooms equipped with daylight-based dimming and occupancy control systems 

used 40% less energy than those with manual lighting control. The corresponding savings 

were 22% in rooms with only occupancy control. The savings were obtained without 

reducing the illuminance level by utilising the daylight and turning the artificial light off 

when it was not needed. The UGR values in all cases were below the value recommended 

by the CIBSE code and European standard. 

 

Dimming control according to daylight has great potential for energy savings but the 

design of the system is quite complex. There is parasitic power associated with every 

automatic control system, which should be justified by the savings from the use of the 

control system. If daylight in the room is only available near the window, each luminaire 

should be controlled independently and have its own individual daylight sensor.  

 

The photometric and electrical measurements performed before and after the renovation 

of the auditorium showed that the new lighting installation provided higher illuminance 

levels and better colour rendering, while lighting energy consumption was reduced. 

There was a 30% reduction in the consumption of electricity, while the illuminance level 

was doubled after renovation. The UGR value from the lecturer’s point of view was found 

to be beyond the standard recommendation level. This is due to the higher surface 

brightness of the T5 lamp compared to that of the old T12 lamps and also higher 

illumination levels. The luminaries are dimmed to 80% power level during the lectures. 

This results in a reduction in the UGR value and a further increase in energy savings. 

This illustrates the saving potential of the application of existing technology. The results 

give backing to the previous estimates and claims of the possibility of making savings by 

the use of new lighting technologies (IEA 2006, Mills 2002, Novem 1999, Tichelen 

2007). 

 

The EU energy performance of buildings directive adopted in 2002 is an attempt to 

improve overall energy efficiency in buildings, including lighting. The directive requires, 

inter alia, a calculation procedure and performance limits for lighting. This enables 

energy-efficient lighting to be used in meeting the overall building energy standard. The 

lighting energy calculations used in this work were made by dividing the building into 

daylight and artificial light zones and by taking into account the different reduction 
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factors for daylight and controls. The calculation methods also consider the energy 

consumption of the sensors used for lighting control.  

 

Measurement of the energy consumption in the office rooms was carried out to make 

comparisons with the calculated values. The calculation methods need to be tested by 

taking measurements and correcting factors for the calculation methods can be 

established if needed. The average measured value of energy use in the office rooms was 

equal to the calculated value based on the Belgian method. This value was 4% higher 

than the calculated value based on the European standard calculation method. The 

calculation process involved assumption of the burning hours of lamps, which is difficult, 

especially when the office workers have non-homogenous working hours. This resulted in 

significant differences between the calculated and measured values in some rooms.  

 

Measurement and evaluation of the traditional fuel-based lighting system in rural Nepali 

villages revealed the degree of inequality of access to basic lighting services in developed 

and developing countries. The existing pine stick lamps were found to be around 300 

times less efficient than the new white LED-based lighting. Furthermore, pine stick 

lighting is a cause of various health problems because of the smoke produced by the 

burning stick. 

 

A cost analysis of pine stick lighting and solar-powered LED lighting in rural Nepali 

villages indicated that the cost of pine stick lighting was $4.36 per klmh (kilolumen-hour), 

while the cost of solar PV-driven LED lighting was $0.22 per klmh. The prices of LEDs 

are decreasing and the luminous efficacies are increasing due to the continuous 

development of LED technology. Hence the difference in cost between LED lighting and 

traditional pine stick lighting is expected to increase further in the future. 

 

The amount of light provided by an LED lighting system has to be sufficient to provide a 

safe visual environment and to make it possible to perform visual tasks. The proposed 

recommendation for illuminance is 5 to 15 lx for general purposes and ≥ 25 lx for reading 

and other similar tasks. These recommendations are based on illuminance measurements 

and user interviews in Nepali villages. 

 

The utilisation of decentralised small-scale renewable energy technologies is an important 

element of the successful replacement of fuel-based lighting in developing countries. 

These renewable energy technologies can be solar PV, small-scale hydro, and wind. The 

chosen energy system has to be cheap and easy to maintain and operate as the rural 

villagers often lack the knowledge and expertise for maintenance.   
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